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any proper lower semicontinuous convex function defined on a Hilbert space. Our computation enhances and
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when it is radial. We provide several examples of non-radial functions for which the domain of its conjugate is

not open and we compute the proximity operators of their perspectives.

Keywords Convex analysis · Fenchel conjugate · Perspective function · Proximity operator · Recession function

MSC (2020): 46N10 · 47J20 · 49J53 · 49N15 · 90C25.

1

http://arxiv.org/abs/2305.04999v2
mailto:luis.briceno@usm.cl
mailto:cristobal.vivar@usm.cl


1 Introduction

In this paper we enhance the computation of the proximity operator of the perspective of a proper lower semicontinuous
convex function defined in a real Hilbert space H. This construction is introduced in [25] and appears naturally in
optimal mass transportation theory [3, 26], dynamical formulation of the 2-Wasserstein distance [3, 26], information
theory [18], physics [5], operator theory [17], statistics [23], matrix analysis [16], signal processing and inverse
problems [21, 20, 22], JKO [19] schemes for gradient flows in the space of probability measures [4, 11], and
transportation and mean field games problems with state-dependent potentials [8, 9], among other disciplines.

The proximity operator of the perspective of a proper lower semicontinuous convex function f : H → ]−∞,+∞] is
first obtained in [13, Theorem 3.1] in the case when the domain of f∗ is open, where f∗ denotes the Fenchel-Legendre
conjugate of f . Some examples in the case when the domain f∗ is closed are also explored in [13, Section 3.2].
These results need the solution of an inclusion in H in order to compute the proximity operator of the perspective
of f . In the case when f is radial, the proximity operator of the perspective of f is studied without any assumptions
on the domain of its conjugate in [14, Proposition 2.3]. This calculus needs a projection onto a particular convex
subset of R2, which is not always easy to compute. Previous results do not allow the computation of the proximity
operator of the perspective of non-radial functions f such that the domain of f∗ is not open. This is the case, for
instance, of entropy-based penalizations including the log-sum, which arises, e.g., in optimal transport problems
and mathematical programming [1, 10].

The goal of this paper is to provide a simple computation of the proximity operator of the perspective of any proper
lower semicontinuous convex function without any further assumption. Our computation generalizes the results
in [13] and [14] and the solution of a scalar equation is needed, which can be obtained via standard root-finding
methods [24]. We provide several examples of non-radial functions f such that the domain of f∗ is not open, for
which the proximity operator is not available in the literature.

The paper is organized as follows. In Section 2 we present our notation and preliminary results. The proximity
operator for the perspective of f is presented in Section 3. Examples are studied in Section 4.

2 Notation and preliminaries

2.1 Notation

Throughout this paper, H is a real Hilbert space endowed with the inner product 〈· | ·〉 and associated norm ‖·‖.
H⊕ R denotes the Hilbert direct sum between H and R.

Let f : H → ]−∞,+∞]. The domain of f is dom f = {x ∈ H | f(x) < +∞} and f is proper if dom f 6= ∅. Denote
by Γ0(H) the class of proper lower semicontinuous convex functions from H to ]−∞,+∞]. Suppose that f ∈ Γ0(H).
The recession function of f is

(∀x0 ∈ dom f)(∀x ∈ H) rec f(x) = lim
t→+∞

f(x0 + tx)− f(x0)

t
(2.1)

and it satisfies (see [2, Proposition 7.13 & Proposition 13.49])

rec f = σdom f∗ = σ dom f∗ . (2.2)

The Fenchel conjugate of f is

f∗ : H → ]−∞,+∞] : u 7→ sup
x∈H

(〈x | u〉 − f(x)) . (2.3)

We have f∗ ∈ Γ0(H), f∗∗ = f , and we have the Fenchel-Young inequality [2, Proposition 13.15]

(∀x ∈ H)(∀u ∈ H) f(x) + f∗(y) ≥ 〈x | u〉. (2.4)
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The subdifferential of f is the set-valued operator

∂f : H → 2H : x 7→ {u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y)} (2.5)

and dom∂f = {x ∈ H | ∂f(x) 6= ∅}. We have the Fenchel-Young identity [2, Proposition 16.10]

(∀x ∈ H)(∀u ∈ H) u ∈ ∂f(x) ⇔ f(x) + f∗(u) = 〈x | u〉. (2.6)

The proximity operator of f is

proxf : H → H : x 7→ argmin
y∈H

(
f(y) +

1

2
‖x− y‖2

)
, (2.7)

which is characterized by
(∀x ∈ H)(∀p ∈ H) p = proxf x ⇔ x− p ∈ ∂f(p) (2.8)

and satisfies

(∀γ ∈ ]0,+∞[) proxγf = Id−γ proxf∗/γ ◦(Id /γ), (2.9)

where Id : H → H denotes the identity operator.

Let C ⊂ H be a nonempty closed convex set. The indicator function of C is

ιC : H → ]−∞,+∞] : x 7→
{
0, if x ∈ C;

+∞, if x 6∈ C,
(2.10)

its support function is

σC : H → ]−∞,+∞] : u 7→ sup
x∈C

〈x | u〉, (2.11)

and we have σC = (ιC)
∗. The projection operator onto C is PC = proxιC , which is characterized by

(∀x ∈ H)(∀y ∈ C) 〈y − PCx | x− PCx〉 ≤ 0. (2.12)

For further background on convex analysis, the reader is referred to [2].

2.2 Perspective functions and properties

Now, we review essential properties of perspective functions. We refer the reader to [12] for further background.

Definition 2.1. Let f ∈ Γ0(H). The perspective of f is:

f̃ : H× R → ]−∞,+∞] : (x, η) 7→






ηf

(
x

η

)
, if η > 0;

(rec f)(x), if η = 0;

+∞, if η < 0.

(2.13)

Lemma 2.1. Let f ∈ Γ0(H). Then the following hold:

(i) f̃ ∈ Γ0(H⊕ R).

(ii) f̃ is not radial, i.e., there exist (x, η) and (y, ν) in H× R such that ‖(x, η)‖ = ‖(y, ν)‖ and f̃(x, η) 6= f̃(y, ν).

(iii) Let C = {(x, η) ∈ H × R | η + f∗(x) ≤ 0}. Then
(
f̃
)∗

= ιC .

Proof. (i): [12, Proposition 2.3(ii)].

(ii): Let (x, η) ∈ H× ]0,+∞[ be such that x/η ∈ dom f . Then ‖(x, η)‖ = ‖(x,−η)‖ and f̃(x, η) = ηf(x/η) < +∞ =

f̃(x,−η). Hence f is not radial.

(iii): [12, Proposition 2.3(iv)].
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2.3 Preliminaries on proximity operators

We now provide some preliminary results needed in the following sections.

Lemma 2.2. [7, Lemma 3.1(iii)-(iv)] Let f ∈ Γ0(H), let γ ∈ ]0,+∞[, and let (x, p) ∈ H ×H. Then the following

propositions are equivalent:

(i) p = proxγf x.

(ii) f(p) + f∗ ((x− p)/γ) = 〈p | (x− p)/γ〉.

(iii) (∀y ∈ H) 〈x− p | y − p〉+ γf(p) ≤ γf(y).

Proposition 2.1. Let f ∈ Γ0(H), let γ ∈ ]0,+∞[, and let x ∈ H. Then the following hold:

(i) We have

−
〈
x− P dom f x

∣∣∣ proxγf x− P dom f x
〉
+
∥∥∥P dom f x− proxγf x

∥∥∥
2

≤ γ
(
f
(
P dom f x

)
− f

(
proxγf x

))
(2.14)

(ii) f
(
proxγf x

)
≤ f

(
P dom f x

)
.

Proof. (i): Let x and p in H be such that p = proxγf x. Then, by setting y = P dom f x, it follows from Lemma 2.2
that

−
〈
x− P dom f x

∣∣∣ p− P dom x
〉
+
∥∥∥P dom f x− p

∥∥∥
2

≤ γ
(
f
(
P dom f x

)
− f(p)

)
, (2.15)

and (2.14) follows.

(ii): Since dom f is nonempty, closed, convex, and proxγf x ∈ dom ∂f ⊂ dom f , it follows from (2.12) that

〈
x− P dom f x

∣∣∣ proxγf x− P dom f x
〉
≤ 0. (2.16)

Hence, the result follows from (i).

3 Main results

The proximity operator of a perspective function when dom f∗ is open is computed in [13, Theorem 3.1]. In the case
of radial functions, this hypothesis is removed in [14, Proposition 2.3]. In this section we compute the proximity

operator of f̃ for any f ∈ Γ0(H).

Theorem 3.1. Let f ∈ Γ0(H), let γ ∈ ]0,+∞[, and let (x, η) ∈ H × R. Then the following hold:

(i) Suppose that η + γf∗
(
P dom f∗ (x/γ)

)
≤ 0. Then

proxγf̃ (x, η) =

(
x− γP dom f∗

(
x

γ

)
, 0

)
. (3.1)

(ii) Suppose that η + γf∗
(
P dom f∗ (x/γ)

)
> 0. Then there exists a unique µ ∈

]
0, η + γf∗

(
P dom f∗ (x/γ)

)]
such

that

µ = η + γf∗

(
proxµ

γ
f∗

(
x

γ

))
. (3.2)

Furthermore

proxγf̃(x, η) =

(
x− γ proxµ

γ
f∗

(
x

γ

)
, µ

)
. (3.3)
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Proof. First note that Lemma 2.1(i) asserts that f̃ ∈ Γ0(H⊕R). Let (p, µ) ∈ H×R be such that (p, µ) = proxγf̃(x, η).
It follows from Lemma 2.1 and Lemma 2.2 that

(p, µ) = proxγf̃(x, η) ⇔ f̃(p, µ) +
(
f̃
)∗(x− p

γ
,
η − µ

γ

)
=

〈
(p, µ)

∣∣∣∣
(
x− p

γ
,
η − µ

γ

)〉

⇔ f̃(p, µ) + ιC

(
x− p

γ
,
η − µ

γ

)
=

〈
p

∣∣∣∣
x− p

γ

〉
+ µ

(
η − µ

γ

)

⇔ f̃(p, µ) =

〈
p

∣∣∣∣
x− p

γ

〉
+ µ

(
η − µ

γ

)
and

η − µ

γ
+ f∗

(
x− p

γ

)
≤ 0. (3.4)

Moreover, since (p, µ) ∈ dom ∂f̃ ⊂ dom f̃ , we have µ ∈ [0,+∞[. Then, let us consider two cases.

(i) Suppose that µ = 0. Then (3.4), (2.2), Lemma 2.2, and (2.9) imply

(p, 0) = proxγf̃ (x, η) ⇔ (rec f)(p) =

〈
p

∣∣∣∣
x− p

γ

〉
and

η

γ
+ f∗

(
x− p

γ

)
≤ 0

⇔ σ dom f∗ (p) + ι dom f∗

(
x− p

γ

)
=

〈
p

∣∣∣∣
x− p

γ

〉
and

η

γ
+ f∗

(
x− p

γ

)
≤ 0

⇔ p = proxγσ dom f∗

x and
η

γ
+ f∗

(
x− p

γ

)
≤ 0

⇔ p = x− γP dom f∗

(
x

γ

)
and η + γf∗

(
P dom f∗

(
x

γ

))
≤ 0. (3.5)

(ii) Suppose that µ > 0. Then it follows from Lemma 2.2, (2.4), and (2.9) that

(p, µ) = proxγf̃(x, η) ⇔ µf

(
p

µ

)
=

〈
p

∣∣∣∣
x− p

γ

〉
+ µ

(
η − µ

γ

)

and
η − µ

γ
+ f∗

(
x− p

γ

)
≤ 0

⇔ f

(
p

µ

)
=

〈
p

µ

∣∣∣∣
x− p

γ

〉
+
η − µ

γ

and
η − µ

γ
+ f∗

(
x− p

γ

)
≤ 0

⇔ f

(
p

µ

)
+ f∗

(
x− p

γ

)
=

〈
p

µ

∣∣∣∣
x− p

γ

〉
+
η − µ

γ
+ f∗

(
x− p

γ

)

and
η − µ

γ
+ f∗

(
x− p

γ

)
≤ 0

⇔ f

(
p

µ

)
+ f∗

(
x− p

γ

)
=

〈
p

µ

∣∣∣∣
x− p

γ

〉

and
η − µ

γ
= −f∗

(
x− p

γ

)

⇔ p

µ
= proxγ

µ
f

(
x

µ

)
and µ = η + γf∗

(
x− p

γ

)

⇔ p = x− γ proxµ
γ
f∗

(
x

γ

)
and µ = η + γf∗

(
proxµ

γ
f∗

(
x

γ

))
. (3.6)
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Hence, Proposition 2.1((ii)) implies that

0 < µ = η + γf∗

(
proxµ

γ
f∗

(
x

γ

))
≤ η + γf∗

(
P dom f∗

(
x

γ

))
. (3.7)

Altogether, if η + γf∗(P dom f∗ (x/γ)) ≤ 0 and supposing that µ > 0, we arrive at a contradiction with (3.7) and
therefore (3.1) follows from (3.5). Conversely, if η+γf∗(P dom f∗ (x/γ)) > 0 and supposing that µ = 0, we arrive at a
contradiction with (3.5) and therefore (3.3) and (3.2) follow from (3.6) and [7, Lemma 3.2(ii) & Lemma 3.2(iii)].

In the case when f∗ has open domain, Theorem 3.1 recovers [13, Theorem 3.1], as the following example illustrates.

Example 3.1. Let f ∈ Γ0(H), let γ ∈ ]0,+∞[, let η ∈ R, and let x ∈ H. Then the following hold:

(i) Suppose that η + γf∗ (x/γ) ≤ 0. Then proxγf̃(x, η) = (0, 0).

(ii) Suppose that dom f∗ is open and that η + γf∗ (x/γ) > 0. Then

proxγf̃(x, η) = (x− γp, η + γf∗(p)), (3.8)

where p is the unique solution to the inclusion

x ∈ γp+ (η + γf∗(p))∂f∗(p). (3.9)

If f∗ is differentiable at p, then p is characterized by y = γp+ (η + γf∗(p))∇f∗(p).

Proof. (i): Note that η + γf∗(x/γ) ≤ 0 implies that x/γ ∈ dom f∗ ⊂ dom f∗ and then P dom f∗ (x/γ) = x/γ.
Therefore, it follows from Theorem 3.1(i) that

proxγf̃ (x, η) =

(
x− γPdom f∗

(
x

γ

)
, 0

)
=

(
x− γ

x

γ
, 0

)
= (0, 0). (3.10)

(ii): Suppose that η + γf∗(Pdom f∗ (x/γ)) ≤ 0. Then, since dom f∗ is open, P dom f∗(x/γ) ∈ dom f∗ = int(dom f∗)
and it follows from Theorem 3.1(i) that proxγf̃(x, η) = (x − γPdom f∗ (x/γ) , 0). Hence, (3.4), (2.2), the fact that

ιdom f∗(Pdom f∗(x/γ)) = 0, and (2.6) yield

f̃

(
x− γPdom f∗

(
x

γ

)
, 0

)
= rec f

(
x− γPdom f∗

(
x

γ

))

= σdom f∗

(
x− γPdom f∗

(
x

γ

))

=

〈
x− γPdom f∗

(
x

γ

) ∣∣∣∣ Pdom f∗

(
x

γ

)〉
. (3.11)

Therefore, by [2, Corollary 7.6(i)], Pdom f∗(x/γ) ∈ dom f∗ \ int(dom f∗) which is a contradiction. Therefore η +
γf∗(Pdom f∗ (x/γ)) > 0 and it follows from Theorem 3.1(ii) that

proxγf̃(x, η) =

(
x− γ proxµ

γ
f∗

(
x

γ

)
, µ

)
, (3.12)

where µ is the solution of the equation

µ = η + γf∗

(
proxµ

γ
f∗

(
x

γ

))
. (3.13)

Now, given p ∈ H, it follows from (2.8) that

p = proxµ
γ
f∗

(
x

γ

)
⇔ x ∈ γp+ µ∂f∗(p) = γp+ (η + γf∗(p))∂f∗(p). (3.14)

Hence, (3.8) and (3.9) follow from (3.12) and (3.14). Lastly, the claim when f∗ is differentiable follows from
∂f∗(p) = {∇f∗(p)}.
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Remark 3.1. Note that [13, Theorem 3.1] needs the solution to the inclusion (3.9) for computing proxγf̃ . By
contrast, Theorem 3.1 only needs to solve a scalar equation, which can be obtained via standard root-finding
methods [24].

The next result illustrates Theorem 3.1 in the particular case of radial functions.

Proposition 3.1. Let φ ∈ Γ0(R) be even, set f = φ ◦ ‖·‖, let γ ∈ ]0,+∞[, and let (x, η) ∈ H × R. Then the

following hold:

(i) Suppose that η + γφ∗
(
P domφ∗ (‖x‖ /γ)

)
≤ 0. Then

proxγf̃ (x, η) =





((
1− γ

P domφ∗ (‖x‖/γ)
‖x‖

)
x, 0

)
, if x 6= 0;

(0, 0), if x = 0.

(3.15)

(ii) Suppose that η + γφ∗
(
P domφ∗ (‖x‖ /γ)

)
> 0. Then there exists a unique µ ∈ ]0,+∞[ such that

µ = η + γφ∗
(
proxµ

γ
φ∗

(‖x‖
γ

))
. (3.16)

Furthermore

proxγf̃ (x, η) =






((
1− γ

proxµ
γ
φ∗ (‖x‖/γ)
‖x‖

)
x, µ

)
, if x 6= 0;

(0, η + γφ∗(0)), if x = 0.

(3.17)

Proof. First, since φ is even, [2, Proposition 13.21] implies that φ∗ is even and [2, Example 13.8] yields

f∗ = φ∗ ◦ ‖ · ‖. (3.18)

Hence,

f(0) = φ(0) = inf
x∈R

φ(x) = −φ∗(0) = −f∗(0), (3.19)

and it follows from φ∗ ∈ Γ0(R) and [7, Lemma 3.1(i) & Lemma 3.2(ii)] that

(∀x ∈ H) Pdom f∗(x) =





Pdomφ∗(‖x‖)

x

‖x‖ , if x 6= 0;

0, if x = 0.
(3.20)

Therefore (3.18), (3.19), and (3.20) yield

(∀x ∈ H) f∗
(
Pdom f∗x

)
= φ∗

(
Pdom φ∗(‖x‖)

)
. (3.21)

(i): In this case (3.21) yields

η + γf∗

(
P dom f∗

(
x

γ

))
≤ 0. (3.22)

Therefore, the result follows from Theorem 3.1(i) and (3.20).

(ii): In this case (3.21) yields

η + γf∗

(
Pdom f∗

(
x

γ

))
> 0. (3.23)

6



Hence, it follows from Theorem 3.1(ii) and [7, Lemma 3.2(iv)] that there exists a unique µ ∈ ]0,+∞[ such that

µ = η + γf∗

(
proxµ

γ
f∗

(
x

γ

))
= η + γφ∗

(
proxµ

γ
φ∗

(‖x‖
γ

))
, (3.24)

and

proxγf̃(x, η) =






((
1− γ

proxµ

γ
φ∗ (‖x‖/γ)
‖x‖

)
x, µ

)
, if x 6= 0;

(0, µ), if x = 0.

(3.25)

Furthermore, for x = 0, (3.24) and (3.25) yield µ = η+ γφ∗(proxµφ∗/γ(0)) and proxγf̃ (x, η) = (−γ proxµf∗/γ(0), µ).

Next, since φ(0) = −φ∗(0) and µ ≥ 0, it follows from (2.6) and (2.8) that

0 = φ(0) + φ∗(0) ⇔ 0 ∈ µ

γ
∂φ∗(0) ⇔ 0 = proxµ

γ
φ∗(0). (3.26)

Therefore, the result follows from (3.24), (3.25), and (3.26).

Remark 3.2. Note that [14, Proposition 2.3] can be obtained from Proposition 3.1. Indeed, let us define

R =
{
(ν, χ) ∈ R

2
∣∣ χ+ φ∗(ν) ≤ 0

}

and S =
{
(ν, χ) ∈ R

2
∣∣∣ χ+ φ∗

(
Pdomφ∗ν

)
≤ 0
}

(3.27)

and note that R is nonempty, closed, and convex, since it is the level set of the proper lower semicontinuous convex
function (ν, χ) 7→ χ+φ∗(ν). Now let (x, η) and (ν, χ) in H×R. It follows from (2.12) that (ν, χ) = PR(‖x‖/γ, η/γ)
if and only if

(∀(ν, χ) ∈ R) (ν − ν)

(‖x‖
γ

− ν

)
+ (χ− χ)

(
η

γ
− χ

)
≤ 0. (3.28)

Moreover, since R ⊂ S, we have three cases:

(i) (‖x‖/γ, η/γ) ∈ R: In this case we have ‖x‖ /γ ∈ domφ∗, and, then, Pdomφ∗(‖x‖ /γ) = ‖x‖ /γ. Hence, it
follows from Proposition 3.1(i) that

proxγf (x, η) = (0, 0). (3.29)

(ii) (‖x‖/γ, η/γ) ∈ S \R: In this case, note that (ν, χ) ∈ R implies ν ∈ domφ∗ ⊂ domφ∗ and, hence, (2.12) yields

(∀(ν, χ) ∈ R) 0 ≥
(
ν − Pdom φ∗

(‖x‖
γ

))(‖x‖
γ

− Pdomφ∗

(‖x‖
γ

))

=

(
ν − Pdom φ∗

(‖x‖
γ

))(‖x‖
γ

− Pdomφ∗

(‖x‖
γ

))

+
(
χ− η

γ

)( η
γ
− η

γ

)
. (3.30)

Therefore, (3.28) implies (ν, χ) = (Pdom φ∗(‖x‖/γ), η/γ) = PR(‖x‖/γ, η/γ) and Proposition 3.1(i) yields

proxγf̃ (x, η) =






((
1− γν

‖x‖

)
x, η − γχ

)
, if x 6= 0;

(0, 0), if x = 0.

=





((
1− γ

Pdomφ∗(‖x‖ /γ)
‖x‖

)
x, 0

)
, if x 6= 0;

(0, 0), if x = 0.

(3.31)
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(iii) (‖x‖/γ, η/γ) ∈ R
2 \ S: In this case, recalling that φ∗(0) = −φ(0), we obtain from Proposition 3.1(ii) that

proxγf̃(0, η) = (0, η − γφ(0)). On the other hand, set

(ν, χ) =

(
proxµ

γ
φ∗

(‖x‖
γ

)
,−φ∗

(
proxµ

γ
φ∗

(‖x‖
γ

)))
, (3.32)

where µ ∈ ]0,+∞[ is the unique solution to (3.16) guaranteed by Proposition 3.1(ii). It follows from Lemma 2.2
that

(∀ν ∈ domφ∗) (ν − ν)

(‖x‖
γ

− ν

)
≤ µ

γ
(φ∗(ν) − φ∗(ν)). (3.33)

Now, let (ν, χ) ∈ R and recall that ν ∈ domφ∗. Hence, (3.33), (3.16), and (3.32) yield

(ν − ν)

(‖x‖
γ

− ν

)
+ (χ− χ)

(
η

γ
− χ

)
≤ µ

γ
(φ∗(ν)− φ∗(ν)) + (χ− χ)

(
η

γ
− χ

)

=

(
η

γ
+ φ∗(ν)

)
(φ∗(ν)− φ∗(ν)) + (χ+ φ∗(ν))

(
η

γ
+ φ∗(ν)

)

=

(
η

γ
+ φ∗(ν)

)
(φ∗(ν) + χ)

=
µ

γ
(φ∗(ν) + χ)

≤ 0. (3.34)

Therefore, (ν, χ) = PR(‖x‖/γ, η/γ) and [14, Proposition 2.3(iii)] is obtained from Proposition 3.1(ii).

Altogether, we deduce that [14, Proposition 2.3] is deduced from Proposition 3.1. Note that, the formulae in [14,
Proposition 2.3] need the computation on R ⊂ R

2, which can be complicated in some instances, as the following
example illustrates.

Example 3.2. In the context of Proposition 3.1, let φ : x 7→ x2/2. Then, φ∗ = φ, domφ∗ = R, and, for every
τ ∈ ]0,+∞[, proxτφ∗ = Id /(1 + τ). Therefore, given (x, η) ∈ H × R, Proposition 3.1 yields

proxγf̃(x, η) =






(0, 0), if η + ‖x‖2/(2γ) ≤ 0;

(0, η), if η + ‖x‖2/(2γ) > 0 and x = 0;
(

µ
γ+µx, µ

)
, if η + ‖x‖2/(2γ) > 0 and x 6= 0,

(3.35)

where µ ∈ ]0,+∞[ is the unique solution to

µ = η +
γ

2(γ + µ)2
‖x‖2. (3.36)

On the other hand, the proximity operator of the perspective proposed in [14, Proposition 2.3] needs the projection
onto

R =
{
(ν, χ) ∈ R

2
∣∣ χ+ ν2/2 ≤ 0

}
,

which involves additional computations.

4 Examples

In this section, we provide several instances in which f is non-radial, dom f∗ is not open, and Theorem 3.1 allows
us to compute the proximity operator of f . For this class of functions, the computation of the proximity operator
of their perspectives is not available in the literature.

Let us start with the computation of the proximity operator of the perspective of the perspective of a lower
semicontinuous convex function.
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Example 4.1. Let G be a real Hilbert space, let g ∈ Γ0(G), and set f = g̃. Then, Lemma 2.1(i) yields f ∈ Γ0(G×R)
and, since f is positively homogeneous [12, Proposition 2.3(i)], we have

f̃ : ((x, η), δ) 7→





ηg

(
x

η

)
, if η > 0 and δ ≥ 0;

(rec g)(x), if η = 0 and δ ≥ 0;

+∞, if η < 0 or δ < 0.

(4.1)

Moreover, by defining C = {(x, η) ∈ G × R | η + g∗(x) ≤ 0}, it follows from Lemma 2.1(iii) that

f∗ = ιC and (∀τ ∈ ]0,+∞[) proxτf∗ = Pdom f∗ = PC . (4.2)

Hence, since g∗ ∈ Γ0(G), dom f∗ = C is closed. Now, in order to compute the proximity operator of f̃ , fix
(x, η) ∈ G × R, δ ∈ R, γ ∈ ]0,+∞[, and note that

δ + γf∗

(
Pdom f∗

(
x

γ
,
η

γ

))
= δ + γιC

(
PC

(
x

γ
,
η

γ

))
= δ. (4.3)

Therefore, by considering H = G ⊕ R, we deduce from Lemma 2.1(i) and Theorem 3.1(i) that, if δ ≤ 0, proxγf̃ is

computed in (3.1). On the other hand, if δ > 0, Theorem 3.1(ii) asserts that there exists a unique µ ∈ ]0, δ] solution
to µ = δ + γf∗(proxµf∗/γ(x/γ)) and proxγf̃ is obtained in (3.3). Altogether, noting that (4.2) implies that µ = δ,

we derive from (2.9) and again from Theorem 3.1 that

proxγf̃ ((x, η), δ) =

(
(x, η) − γPC

(
x

γ
,
η

γ

)
,max{0, δ}

)

=
(
proxγg̃(x, η),max{0, δ}

)

=





(
x− γP dom g∗

(
x
γ

)
, 0,max{0, δ}

)
, if ℓ(x, γ) ≤ 0;

(
x− γ prox ν

γ
g∗

(
x
γ

)
, ν,max{0, δ}

)
, if ℓ(x, γ) > 0,

(4.4)

where ν ∈ ]0, ℓ(x, γ)] is the unique solution to ν = η + γg∗(proxνg∗/γ(x/γ)) and we denote ℓ(x, η) = η +
γg∗(Pdom g∗(x/γ)).

In the particular case when G = R and g : ξ 7→ ξ2/2, we have g = g∗, dom g = R, and, for every τ ∈ ]0,+∞[,
proxτg∗ = Id /(1 + τ). Therefore, (4.4) reduces to

proxγf((ξ, η), δ) =





(0, 0,max{0, δ}), if η + ξ2/(2γ) ≤ 0;
(

ν
γ+ν ξ, ν,max{0, δ}

)
, if η + ξ2/(2γ) > 0,

(4.5)

where ν ∈
]
0, η + ξ2/(2γ)

]
is the unique solution to the cubic equation ν = η + γξ2/(2(γ + ν)2).

The following three examples are motivated by penalty methods for solving convex-constrained mathematical
programming problems investigated in [1]. The last example also appears in the dual of entropy-penalized transport
problems [10].

Example 4.2. Set

ψ : ξ 7→
{
− ln(ξ), if ξ > 0;

+∞, if ξ ≤ 0,
(4.6)

set ϕ = ψ + ι]−∞,1], and set f = ϕ∗. Since [2, Example 13.2(iii)] implies that ψ ∈ Γ0(R) and ] − ∞, 1] is
closed and convex, we have ϕ ∈ Γ0(R). Moreover, since domψ∩] −∞, 1[6= ∅, it follows from [2, Theorem 15.3 &
Example 13.2(iii)] and simple computations that f ∈ Γ0(R) and

f : R → ]−∞,+∞] : ξ 7→
{
−1− ln(−ξ), if ξ < −1;

ξ, if ξ ≥ −1,
(4.7)
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from which we obtain

f̃ : R× R → ]−∞,+∞] : (ξ, η) 7→






η − η ln
(
− ξ
η

)
, if η > 0 and ξ < −η;

ξ, if η > 0 and ξ ≥ −η;
max{0, ξ}, if η = 0;

+∞, otherwise.

(4.8)

Moreover, note that

f∗ = ϕ∗∗ = ψ + ι]−∞,1] : ξ 7→
{
− ln(ξ), if 0 < ξ ≤ 1;

+∞, otherwise
(4.9)

and, thus, dom f∗ = ]0, 1] which is neither open nor closed and Pdom f∗ : ξ 7→ mid{0, ξ, 1}. Now, in order to compute

the proximity operator of f̃ , fix ξ ∈ R, η ∈ R, γ ∈ ]0,+∞[, and note that

η + γf∗

(
Pdom f∗

(
ξ

γ

))
= η − γ ln

(
mid

{
0,
ξ

γ
, 1

})
. (4.10)

Therefore, by considering H = R, Theorem 3.1 yields

proxγf̃(ξ, η) =





(
ξ − γPdom f∗

(
ξ
γ

)
, 0
)
, if η − γ ln

(
mid

{
0, ξγ , 1

})
≤ 0;

(
ξ − γ proxµ

γ
f∗

(
ξ
γ

)
, µ
)
, if η − γ ln

(
mid

{
0, ξγ , 1

})
> 0.

(4.11)

where µ ∈ ]0, η − γ ln (mid {0, ξ/γ, 1}) [ is the unique solution to (3.2).

Note that, it follows from (4.9), ] − ∞, 1] ∩ domψ =]0, 1] 6= ∅, and [2, Proposition 24.47] that proxµf∗/γ =

P ]−∞,1] ◦ proxµψ/γ . Moreover, [2, Example 24.40] implies that proxµψ/γ(ξ/γ) = (ξ +
√
ξ2 + 4µγ)/(2γ).

Observing that

ξ +
√
ξ2 + 4µγ

2γ
≥ 1 ⇔ ξ ≥ γ − µ, (4.12)

we obtain

proxµ
γ
f∗

( ξ
γ

)
=





ξ +
√
ξ2 + 4µγ

2γ
, if ξ < γ − µ;

1, if ξ ≥ γ − µ

(4.13)

and (3.2) reduces to

µ =





η, if ξ ≥ γ − η;

η − γ ln

(
ξ+
√
ξ2+4µγ

2γ

)
, if ξ < γ − η.

(4.14)

Hence, since for all (ξ, η) ∈ H × R, we have

η − γ ln

(
mid

{
0,
ξ

γ
, 1

})
≤ 0 ⇔ η ≤ 0 and ξ ≥ γeη/γ (4.15)

and

η − γ ln

(
mid

{
0,
ξ

γ
, 1

})
> 0 ⇔ (η > 0 and ξ ≥ γ − η)

or (ξ < min{γeη/γ, γ − η}), (4.16)
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we deduce that (4.11) can be explicitly written as

proxγf̃(ξ, η) =





(max{0, ξ − γ}, 0) , if η ≤ 0 and ξ ≥ γe
η
γ ;

(ξ − γ, η), if η > 0 and ξ ≥ γ − η;
(
ξ −

√
ξ2 + 4µγ

2
, µ

)
, if ξ < min

{
γe

η
γ , γ − η

}
,

(4.17)

where µ ∈ ]0, η − γ ln (max{0, ξ/γ}) [ is the unique solution to

µ = η − γ ln

(
ξ +

√
ξ2 + 4µγ

2γ

)
. (4.18)

Example 4.3. Let n ∈ N and consider

f : Rn → ]0,+∞[ : x 7→
n∑

i=1

exi−1. (4.19)

Then, f ∈ Γ0(R
n) and

f̃ : Rn × R → ]−∞,+∞] : (x, η) 7→





η
∑n
i=1 e

xi
η
−1, if η > 0;

0, if η = 0 and x ≤ 0;

+∞, otherwise.

(4.20)

In order to compute the proximity operator of f̃ , note that, in view of [2, Example 13.2(v), Proposition 13.23 &
Proposition 13.30], we obtain

f∗ : Rn → ]−∞,+∞] : x 7→
n∑

i=1

φ(xi), (4.21)

where

φ : R → ]−∞,+∞] : ξ 7→





ξ ln(ξ), if ξ > 0;

0, if ξ = 0;

+∞, if ξ < 0.

(4.22)

Hence, dom f∗ = [0,+∞[
n

is closed and Pdom f∗ = max{0, ·}, where we denote max{0, ·} : y 7→ (max{0, yi})1≤i≤n.
Now fix (x, η) ∈ R

n × R, γ ∈ ]0,+∞[, and note that

η + γf∗

(
Pdom f∗

(
x

γ

))
= η +

∑

i∈I+(x)

xi ln

(
xi
γ

)
, (4.23)

where I+(x) = {i ∈ {1, . . . , n} | xi > 0} and the sum over the empty set is zero. Therefore, by setting H = R
n,

Theorem 3.1 yields

proxγf̃(x, η) =





(
x− γmax

{
0,
x

γ

}
, 0

)
, if η +

∑
i∈I+(x)

xi ln

(
xi
γ

)
≤ 0;

(
x− γ proxµ

γ
f∗

(
x

γ

)
, µ

)
, if η +

∑
i∈I+(x)

xi ln

(
xi
γ

)
> 0,

(4.24)

where µ ∈ ]0, η +
∑

i∈I+(x) xi ln(xi/γ)] is the unique solution to (3.2).
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Furthermore, in view of [2, Proposition 16.9], we have proxµf∗/γ(x/γ) ∈ dom ∂(µf∗/γ) = ]0,+∞[
n
. Hence, we

obtain from (2.8) that, for every p ∈ ]0,+∞[
n
,

p = proxµ
γ
f∗

(
x

γ

)
⇔ x

γ
− p ∈ µ

γ
∂f∗(p)

⇔ (∀i ∈ {1, ..., n}) xi
γ

− pi ∈
µ

γ
∂φ(pi)

⇔ (∀i ∈ {1, ..., n}) xi
µ

− 1 = ln(pi) +
γ

µ
pi

⇔ (∀i ∈ {1, ..., n}) γ

µ
e

xi
µ
−1 =

γ

µ
pi e

γ
µ
pi

⇔ (∀i ∈ {1, ..., n}) pi =
µ

γ
W0

(
γ

µ
e

xi
µ
−1

)
, (4.25)

where W0 is the principal branch of the Lambert W-function. Altogether, by denoting min{0, ·} : y 7→ −max{0,−y}
and, for every y ∈ R

n, ey = (eyi)1≤i≤n and W0(y) = (W0(yi))1≤i≤n, (4.24) reduces to

proxγf̃ (x, η) =






(min {0, x} , 0) , if η +
∑

i∈I+(x)

xi ln(xi/γ) ≤ 0;

(
x− µW0

(
γ
µe

x
µ
−1
)
, µ
)
, if η +

∑
i∈I+(x)

xi ln(xi/γ) > 0,
(4.26)

where µ is the unique solution to (3.2), which reduces to

µ = η + µ

n∑

i=1

W0

(
γ

µ
e

xi
µ
−1

)
ln

(
µ

γ
W0

(
γ

µ
e

xi
µ
−1

))
. (4.27)

Since W0 is continuous and strictly increasing in [0,+∞[ [15], µ can be computed via standard one-dimensional
root finding numerical schemes [24, Chapter 9].

Example 4.4. Let n ∈ N and let

f : Rn → R : x 7→ ln

(
n∑

i=1

exi

)
. (4.28)

Then f ∈ Γ0(R
n) and

f̃ : Rn × R → ]−∞,+∞] : (x, η) 7→





η ln
(∑n

i=1 e
xi
η

)
, if η > 0;

max1≤i≤n xi, if η = 0;

+∞, if η < 0,

(4.29)

which appears naturally in the dual of entropy-penalized transport problems [10].

In order to compute the proximity operator of f̃ , set φ as in (4.22) and let

△ =

{
x ∈ [0,+∞[

n

∣∣∣∣∣

n∑

i=1

xi = 1

}
(4.30)

be the probability simplex in R
n. Then [6, Example 3.25] yields

f∗ : R
n → ]−∞,+∞] : x 7→

{∑n
i=1 φ(xi), if

∑n
i=1 xi = 1;

+∞, otherwise,
(4.31)
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and hence, dom f∗ = △ is closed. Now, fix x ∈ R
n, η ∈ R, and γ ∈ ]0,+∞[. By setting H = R

n, Theorem 3.1
implies

proxγf̃(x, η) =





(
x− γP△

(
x
γ

)
, 0
)
, if η + γf∗

(
P△

(
x
γ

))
≤ 0,

(
x− γ proxµ

γ
f∗

(
x
γ

)
, µ
)
, if η + γf∗

(
P△

(
x
γ

))
> 0,

(4.32)

where µ ∈ ]0, η + γf∗ (P△(x/γ))] is the unique solution to (3.2). Moreover, since [2, Proposition 16.9] yield
proxµf∗/γ(x/γ) ∈ dom ∂(µf∗/γ) = △∩ ]0,+∞[

n
, we obtain from (2.8) that, for every p ∈ △ ∩ ]0,+∞[

n
,

p = proxµ
γ
f∗

(
x

γ

)
⇔ x

γ
− p ∈ µ

γ
∂f∗(p)

⇔ (∃λ ∈ R)(∀i ∈ {1, ..., n}) xi − γpi
µ

= ln(pi) + 1 + λ

⇔ (∃λ ∈ R)(∀i ∈ {1, ..., n}) xi
µ

− 1− λ = ln(pi) +
γ

µ
pi

⇔ (∃λ ∈ R)(∀i ∈ {1, ..., n}) γ

µ
e

xi
µ
−1−λ =

γ

µ
pi e

γ
µ
pi

⇔ (∃λ ∈ R)(∀i ∈ {1, ..., n}) pi =
µ

γ
W0

(
γ

µ
e

xi
µ
−1−λ

)
, (4.33)

where W0 is the principal branch of the Lambert W-function. Note that by summing over i in (4.33) we obtain

µ

γ

n∑

i=1

W0

(
γ

µ
e

xi
µ
−1−λ

)
= 1. (4.34)

Altogether, (4.32) reduces to

proxγf̃(x, η) =





(
x− γP△

(
x
γ

)
, 0
)
, if η + γf∗

(
P△

(
x
γ

))
≤ 0,

(
x− µW0

(
γ
µe

x
µ
−Λ
)
, µ
)
, if η + γf∗

(
P△

(
x
γ

))
> 0,

(4.35)

where we denote Λ = (λ + 1)1≤i≤n, and µ and λ are the solution to the nonlinear system of equations




µ = η + µ

∑n
i=1W0

(
γ
µe

xi
µ
−1−λ

)
ln
(
µ
γW0

(
γ
µe

xi
µ
−1−λ

))
;

1 = µ
γ

∑n
i=1W0

(
γ
µe

xi
µ
−1−λ

)
,

(4.36)

which can be solved, for instance, by Newton’s type methods.

5 Conclusions

In summary, we provide an explicit formula for the proximity operator of the perspective function of any proper lower
semicontinuous convex function defined in real Hilbert spaces. The formula needs to solve a scalar nonlinear equation
which can be efficiently solved by several one-dimensional root-finding numerical schemes. Our result generalizes
[13] and [14], valid only under additional assumptions. Finally, we derive several new formulae of proximity
operators of perspective functions arising in penalization of mathematical programming problems appearing, e.g.,
in entropy-penalized optimal transport problems.
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